Limited Lead-in-Water Assessment

Longview Public Schools Longview, Washington Saint Helens Elementary

Assessment Date(s): February 16, 2022

Report Date: March 10, 2022

Prepared for: Jason Reetz, Facilities Manager

Longview Public Schools

Facility Owner/Operator: Longview Public Schools

Prepared By:

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Limited Lead-in-Water Assessment

Introduction

Sterling Technologies (Sterling) has recently completed a limited lead-in-drinking water screening of the Saint Helens Elementary School, Longview School District, located at 431 27th Avenue in Longview, Washington. The purpose of the investigation was to identify the levels of lead in the various sources of drinking water throughout the learning center. Sample locations included drinking water fountains, classroom sink water faucets, restroom water faucets, and kitchen water faucets.

Background

The school district may be considered a water supply system from a water distribution perspective and may need to comply with the federal guidelines for water monitoring as specified in the Lead & Copper Rule (*Federal Register: June 30, 1994, Part 5. 40 CFR Parts 141 and 142; Drinking Water; Maximum Contaminant Level Goals and National Primary Drinking Water Regulations for Lead and Copper)* and be compelled to monitor the drinking water within the district on an ongoing basis after an effective treatment approach is implemented (56FR 26460 – Lead Copper Rule). Within 30 days of learning the lead level results, all systems must provide individual lead tap results to people who receive water from sites that were sampled, *regardless of whether the results exceed the Lead Action Level* as required by 40 CFR 141.85(d).

Results Summary

Water samples were collected from 48 drinking water sources at the school. 48 samples were found to <u>NOT</u> contain elevated lead levels (above 15 ppb). No (0) samples were found to contain elevated lead levels (below 15 ppb)

Sampling

The samples were collected by EPA accredited inspector provided by Sterling. Samples included representative amounts of water. The lead-in-water samples were analyzed by Apex Laboratories by EPA Method 200.8. The sampling guidelines followed were based on the federal school standard with emphasis on the Lead Copper Rule for sampling sites chosen.

Report continued on the next page...

Assessment Results

Analytical Results: Lead-in-Drinking Water

Item	Sample ID.	Location	Result (µ/L)
1	SH-LR-F	Leap Room, Sink Faucet	3.76
2	SH-101-F	Classroom #101, Sink Faucet	0.302
3	SH-102-F	Classroom #102, Sink Faucet	104
4	SH-102-RR	Classroom #102, Bathroom, Sink Faucet	2.86
5	SH-104-F	Classroom #104, Sink Faucet	0.229
6	SH-104-RR-F	Classroom #104, Bathroom, Sink Faucet	3.40
7	SH-108-F	Classroom #108, Sink Faucet	ND
8	SH-108-DW	Classroom #108, Drinking Fountain	1.27
9	SH-116-F	Classroom #116, Sink Faucet	ND
10	SH-117-F	Classroom #117, Sink Faucet	1.38
11	SH-118-F	Classroom #118, Sink Faucet	0.341
12	SH-119-F	Classroom #119, Sink Faucet	0.797
13	SH-120-F	Classroom #120, Sink Faucet	0.861
14	SH-121-F	Classroom #121, Sink Faucet	0.727
15	SH-128-F	Classroom #128, Sink Faucet	2.50
16	SH-128-BR	Classroom #128, Bathroom, Sink Faucet	0.638
17	SH-132-F	Classroom #132, Sink Faucet	2.90
18	SH-K-F	Kitchen, Sink Faucet #1	0.890
19	SH-K-S	Kitchen, Sink Faucet #2	5.73
20	SH-H-F	Health Room, Sink Faucet	1.25
21	SH-H-BR	Health Room, Bathroom, Sink Faucet	0.612
22	SH-M-F	Music Room, Sink Faucet	1.01
23	SH-G-WF-S	Gym, Drinking Fountain, South	1.39
24	SH-G-WF-N	Gym, Drinking Fountain, South	ND
25	SH-CR-F	Copy Room, Sink Faucet	3.66
26	SH-SK-F	Staff Kitchen, Sink Faucet	0.536
27	SH-C-F	Custodial Closet, Sink Faucet	0.230
28	SH-208-F	Classroom #208, Sink Faucet	0.833
29	SH-209-F	Classroom #209, Sink Faucet	1.27
30	SH-210-F	Classroom #210, Sink Faucet	0.802
31	SH-211-F	Classroom #211, Sink Faucet	0.925
32	SH-212-F	Classroom #212, Sink Faucet	0.754

ND = Non-Detect

Analytical Results continued on the next page...

Analytical Results: Lead-in-Drinking Water (continued)

Item	Sample ID.	Location	Result (µ/L)
33	SH-213-F	Classroom #213, Sink Faucet	0.900
34	SH-214-F	Classroom #214, Sink Faucet	1.09
35	SH-218-F	Classroom #218, Sink Faucet	ND
36	SH-219-F	Classroom #219, Sink Faucet	0.610
37	SH-SRR-EF	Staff Restroom, East, Sink Faucet	0.994
38	SH-SRR-S	Staff Restroom, South, Sink Faucet	0.448
39	SH-SRR-SK	Staff Kitchen, Staff Restroom, Sink Faucet	ND
40	SH-H-RR-S1	Hall Bathroom, Ground Floor, South, Sink Faucet	0.594
41	SH-H-RR-C1	Hall Bathroom, Ground Floor, Center, Sink Faucet	0.615
42	SH-H-RR-N1	Hall Bathroom, Ground Floor, North, Sink Faucet	0.641
43	SH-H-RR-S2	Hall Bathroom, Second Floor, South, Sink Faucet	1.12
44	SH-H-RR-C2	Hall Bathroom, Second Floor, Center, Sink Faucet	1.62
45	SH-H-RR-N2	Hall Bathroom, Second Floor, North, Sink Faucet	ND
46	SH-HWF-N1	Hall, Ground Floor, Drinking Fountain, North	1.11
47	SH-HWF-N1	Hall, Second Floor, Drinking Fountain, North	0.548
48	SH-HWF-2S	Hall, Second Floor, Drinking Fountain, South	ND

ND = Non-Detect

All 48 drinking water samples were found to be below the 15 ppb action level.

Note: Drinking water sources with lead levels above an approximate background level of 2.0 ppb have also been highlighted ().

Conclusions and Recommendations

No elevated lead-in-drinking water levels were noted in the locations sampled, and the results were below the lead-in-drinking water EPA standard under the Safe Drinking Water Act of 15 parts per billion. Several sink faucet locations had residual levels above an approximate background level.

It is our recommendation that the Longview School District consider the installation of a combination drinking fountain and motion sensor water filling system using an ANSI 53 certified filter by the National Science Foundation (NSF). The Elkay EZH20 is a popular fixture and is advertised online for about \$1,500 per unit. Note that fixtures with refrigeration jump in price to around \$4,000. These systems have proven effective for the removal of lead particulates with our other school district clients.

Given the age of the plumbing systems and the slight residual levels of lead noted in the drinking water fountains throughout, Sterling recommends that the district consider replacement of all water fountains in the Saint Helens Elementary School with fixtures that include a suitable lead filtration system. As the existing drinking water fountains do not have an electrical source, a mechanical system would be preferable. With the mechanical fixtures, required filter changes are noted on a counter that is based on the volume of water passed through the filter.

The district might also consider instituting an administrative policy that only those drinking water sources that include a lead filtration system be used for drinking water; discourage use of unfiltered water sources (e.g., classroom sink water faucets).

No further recommendations other than ongoing periodic testing of drinking water sources to ensure lead filters are performing to standard, and to monitor that the existing systems are not degrading further, are made at this time.

Limitations

This report is for the exclusive use of the client, applies only to the specific subject property detailed above, and shall not be relied upon by any other party without the prior written consent of the undersigned.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted practices in this area at the time this report was prepared. No other hazardous materials/wastes were investigated. No other conditions, expressed or implied, should be understood.

Recordkeeping

Additional copies of this report are available from Sterling Technologies upon request. Unless otherwise requested, samples will be retained for a period of 30 days, after which they will be discarded. If you have any questions about these results or would like additional information, please feel free to call our office.

Sterling Technologies thanks you for this opportunity to be of service.

Sincerely.

Thomas Nadermann, M.S., Principal

AHERA Inspector #155212, Lead Risk Assessor #0493

Appendix A

Inspector's Certification

STATE OF WASHINGTON

Department of Commerce

Lead-Based Paint Abatement Program

Thomas Heinrich Nadermann

Has fulfilled the certification requirements of WAC 365-230 and has been certified to conduct lead-based paint activities as a Risk Assessor

Certification #

Issuance Date

Expiration Date 10/22/2023

0493

02/08/2021

STATE OF WASHINGTON

Department of Commerce

Lead-Based Paint Abatement Program

Edwin L Wilson

Has fulfilled the certification requirements of WAC 365-230 and has been certified to conduct lead-based paint activities as a Risk Assessor

Certification #

Issuance Date

Expiration Date 07/22/2024

08/26/2021

Appendix B

Field Data

Laboratory Results

